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The nonlinear interaction of waves in a fluid of finite depth is discussed. For- 
bidden decay processes in the gravitational portion of the spectrum are elimin- 
ated from the Hamiltonian by means of a canonical transformation. This provides 
an opportunity to obtain a kinetic equation which takes into account scattering 
of capillary waves by gravitational waves, in addition to decays in the subsystem 
of gravitational waves. The distribution N k ~ P1/2hX/4k-~ is obtained for capil- 
lary waves in shallow water with constant flow of energy P with respect to the 
spectrum in the space of the wave numbers k. The interaction of the gravitational 
and capillary turbulence spectra is discussed. An induced distribution of gravi- 
tational waves is found which results from their interaction with capillary waves. 
It is an increasing function of the wave numbers q in the region bounded by the 
capillary constant ko, N~ ~ qg/~(q < ko). The coupling of spectra in the gravita- 
tional and capillary reglons and the conversion from slightly turbulent distribu- 
tions to universal distributions are discussed. 

i. The existence of slightly turbulent local distributions of the Kolmogorov type 
is possible in a system of surface waves (because of velocity dispersion). For deep 
water, such distributions, which correspond to a constant flow of energy P in the high- 
frequency region, were found to be [l, 2] 

N (k) = P'/, k- ' ,  h -1 - ~  k , ~  ko (1 .1)  
N ( k ) =  P'!, k -4Vk  -~'~ N pl/,  k_,~;,, ko, h -1 ~ k (1 .2)  

Here V k = ~k/k is the phase velocity of the waves, ~k = (gk + (a/p)k3)I/2is the dis- 
persion law, and N(k) is the density of the number of waves with the wave vector k, which 
determines the energy density in k-space mkN(k). In addition to Eq. (i.i), there is a 
distribution with constant flow Q of number of waves ("particles")* for gravitational 
waves, 

N (k) = qv,  ~ k -~ ~,~ q~h k -" / . ,  h -1 ~ k ~ ko (1 .3)  

in accordance with the fact that the number of waves in this region is an integral of the 

motion. 

The separation of the gravitational (k << ko ~ /pg/~) and capillary (k >> ko) regions 
and the deep-water condition (kh >> i) are essentially used in the determination of the 
solutions (1.1)-(1.3), which is associated with the self-similarity of the equations in 

these regions. 

In this paper, the weakly turbulent distribution of capillary waves in shallow water 
is determined (Set. 4) and the coupling and interactions of turbulence spectra in various 
self-similar regions are discussed (Sees. 5, 6). The roughness spectra are found from the 
kinetic equation for N(k) describing the random ensemble of waves in the theory of weak 
turbulence [3, 4]. The derivation of the kinetic equation from the equations of motion 
is discussed in Sec. 3. The equations of motion and the matrix elements for wave inter- 
actions in a fluid of finite depth are obtained in Sec. 2 in Hamiltonian variables. 
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2. As has been shown [i, 2, 5], the potential motion of a heavy incompressible fluid 
with a free surface z = ~(r, t) filling the half-space z < ~ can be described in Hamilton- 
inn variables which are the elevation of the surface ~(r, t) and the potential of the velo- 
city at the surface ~Iz = 5 = ~(r, t). These variables also remain Hamiltonian for a fluid 
of finite depth. The equations 

V- +T ~=~ - 7  V_L l / t  + (v• 
(2.1) 

O~/Ot = (Oqo/Oz--VSpVs~)z=~, V_t _ ~  (O/Ox, O/~y) (2.2) 

through the use of the volume equation 

A(p.-o, - - h < z < L  ~-//l~=-h= 0 (2 .3)  

can be written in the form 

= 6 ( E / p ) / 6 @ ,  ~------- 6 ( E / p ) / 6 ~  (2 .4)  

E : + i d r  f dz(VcP)2~='=~j ~ + = I d r ( V i + ( V _ ~ )  ~ - l )  (2 .5)  
--h 

where E is the total energy of the system. 

Transforming to the Fourier representation with respect to the transverse coordinates 
in Eqs. (2.2) and (2.3), 

~(r,t)=i.dk~k(t)eikr, ~(r,t)= i dk~k (t)eikr (2 .6)  

and introducing the complex amplitudes ~k of the normal oscillations 

~ kthkh 

i ~ / (O k * 
/ 

~ k  --~ - -  " ~  V ~ ( a k  - -  a-k)" 
(2.7) 

(2 .8)  

where a k i s  the dispersion law for the surface waves, we write the energy E ~ pH{a} of the 
roughness in the form 

3 
1 

4 

I f .. ~2 . . . . . . . . . . . . . . . . . . . . . .  

Here we have used the notation 

(2.9) 

a k ~ :  ak +~ak* for ~ : ~  (2 .10)  

In the transformation from Eq. (2.5) to (2.9), we used the relation between @k and 
Vk : (2~)-2fdr~(r, 0; t) exp (--ikr), 

' ~  = * ~  - i ~k~ak~6 (k - -  k~ - k~) E ~ , ~  + 

q- + f dk~dkflk.a6 (k -- kl -- k2 -- k3)[ki I k'-~--k2 ! + (2. l l )  

+ k'l [ l ~ - - k 3  ] - -  ki2] 1Dk,~k~ka 
correct to terms of the order of ~ak3. 

In accordance with Eq. (2.4), the equation of motion i ~ the variables ak ~ reduce to 

a k ~ : Or ak ~ -  {,~, ak ~} (2 .12)  6a~ ~ 

The v a r i a b l e s  ake a r e  c l a s s i c a l  a n a l o g s  o f  t h e  c r e a t i o n  and a n n i h i l a t i o n  o p e r a t o r s  
ak + and a k- for waves in states with the wave vector k. See the Poisson brackets { } for 
the quantities ak ~ in Eq. (3.5). 
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As is clear from Eq. (2.9), the matrix elements are symmetric with respect to permuta- 
tion of the arguments (o, k), they are real because of the choice of phase in Eq. (2.7), 
and, therefore, do not change when there is a change in sign of all upper indices. Be- 
cause of the isotropy of the medium, they are invariant with respect to simultaneous rota- 
tion of all wave vectors and, in particular, for a change in the sign of {k}. The explicit 
expressione ~r the matrix eler~ents have the form 

1 1 ~olto~to, '/~ ~ [k~k3 + 6263klk3] (2.13) v ~ ' 2 ~ - ~  s ~  k~k~-~ ~,P ,o--7 

where ZP is the sum over all permutations. The function X appearing in Eq. (2.1~) is givenby 

X (k I klk2) = k f k 2  + k~2l~ - fqk2 (I k--~k~ I + [k--~k~ ]) (2 .15)  

and has t h e  f o l l o w i n g  symmetry  p r o p e r t i e s :  

X ( k ] k , ,  ~,)---- X ( k ] k z ,  kO = X ( - - k ] - - k ~ ,  - - k , )  (2 .16)  

The matrix element (2.14) is conveniently rewritten (considering Zoik i = 0), having re- 
placed X(-~kl ]~sk3, o~k~) by a function which is symmetric with respect to each pair of 

argumevts, 
1 ,Z 2k42~ __ (2.17) l ? (51k1, ~k~ ] %ka, ,~k~) : -~- (2k~ k~ + 

- -  k~-~ ~4 ( 161kl @ ~aka I -1- ] 61kl ~- 5*ka ] -}- ] a~kz + asks I + I *2k~ + **k, ])} 

Iv  deep w a t e r  (kh >> l ) ,  ~: t r a n s f o r m s  i n t o  k in  Eqs. ( 2 . 2 3 ) - ( 2 . 1 5 ) .  This  c z s e  has 
been  d i s c u s s e d  [1,  2, 5 ] .  

3. The dispersion law (2.8) for capillary-gravitational waves allows the decay process 

(k) ---- co (k~) 4 ~ (kz), k : k, + k2 ( 3 . 1 )  

for sufficiently large k _> k ~ ko (if koh >~ i, ~ = 2/~). Scattering processes such as 
(3.1) with the participation of one gravitational and two capillary ~aves are also allowed. 
It is impossible to satisfy Eq. (3.1) if k < ~. Furthermore, scattering processes are pos- 
sible with conservation of the ~umber of waves 

to (k) 4- to (kl) = to (k~) + to (ka) , k + k~ = k  2 + k~ (3 .2 )  

which are important in the gravitational region. In the consideration of nondecay proces- 
ses, it is convenient to make a canonical transformation which eliminates from the Hamil- 
tonian ~(2.9) cubic terms that do not makea contribution to the transition probahility 
in first-order perturbation theory. In the present ca~e, such a transformation cannot be 
made in th6 entire k s p a t e  because of th~ ~ppear~.=e o[  divergence~ associated with the 
decay nature of the spectrum when k > ~. We :herefore make a transformation to new vari- 
ables symbolically ~ritten in the form [see Eq. (3.9) also] 

Ak ~ = e-Sak ~e s (3.3) 

SO as to eliminate from the Ramiltonian only forbidden triple processes. In that case, 
#~k ~ wiil difie~ from ~k ~ ~n!y when k < "t~. De~ti~ the quadratic, cubic, ~.v,d four~h-Do~:er 
terms with respect to the variable ~k ~ in the _Hamiltonian (2.9), respectively, byg~i(~) 
(i = 2, 3, 4), we separate out inca the te[m~a responsible for forbidden processes. In 
the new variables, the Hamiltonian~(A) -~(a) = eS(A)~(A)e-S(A) Should not containS'. 
Expanding e S in a series in terms of small $, we obtain 

,~  =.V(~-I ( :~rd~+tSJd2])+(+ IS [S, ~,]]-{ - [5', ~a]  + gf,)-~- O(A')  (3.4) 

where the square brackets denote a PoissDn bracket divided by i and are calculated using 
relations invariant with respect to canonical transformations: 

- ~  {ak *, 0~,:} ~ [ak% a~,:] : 0'8=,_o,5 (k --  k') (3 .5 )  

As is clear from Eq. (3.4), the term.~a vanishes if S is defined by the equality 

~ s  + IS, ~2]  : 0 (3 .6 )  
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which leads to 3 
l~ -at~26s ~1 ~2 03o S : ~ ~ did2d3Skx~&sCZk:ak2gk~O ( ~  ~tki) ( 3 . 7 )  

3 

~ k t k 2 k s  ~--- ~i(0i  Vktk~ka  

The t r a n s f o r m a t i o n  ( 3 . 3 )  i s  c a n o n i c a l ,  s i n c e  Sk ~ = -~Sk ~ in  v iew of  Eqs.  ( 3 . 7 )  and 
( 2 . 1 3 )  ( i . e . ,  S i s  a n t i - t t e r m i t i a n ,  and e S i s  a u n i t a r y  m a t r i x ) .  We s e t  t h e  d i a g o n a l  p a r t  
o f  S, wh ich  i s  n o t  d e f i n e d  by Eq. ( 3 . 6 ) ,  equal t o  z e r o .  I n  t h e  d e r i v a t i o n  o f  t he  c a n o n i -  
c a l  t r a n s f o r m a t i o n ,  i t  i s  c o n v e n i e n t  to u s e  a quantum a n a l o g y .  We compare  to  t h i s  c l a s -  
s i c a l  s y s t e m  a Bose gas  w i t h  t h e  H a m i l t o n i a n  ( 2 . 9 ) ,  where  t h e  ~k ~ a r e  t h e  c r e a t i o n  o p e r a -  
t o r  ak  + and t h e  a n n i h i l a t i o n  o p e r a t o r  a k -  o b e y i n g  t h e  c o m m u t a t i o n  r u l e s  ( 3 . 5 ) .  The u n i -  
t a r y  t r a n s f o r m a t i o n  ( 3 . 3 ) ,  whe re  S i s  an a n t i - H e r m i t i a n  m a t r i x ,  c o r r e s p o n d s  to  t h e  c l a s -  
s i c a l  c a n o n i c a l  t r a n s f o r m a t i o n .  E x p a n d i n g  e S i n  a s e r i e s  i n  t e r m s  o f  t h e  o p e r a t o r s  S, one 
can a r r i v e  a t  Eq. ( 3 . 4 ) ,  wh ich  c o r r e s p o n d s  to  t h e  c l a s s i c a l  fo rm i f  t h e  commuta to r  i s  r e -  
p l a c e d  by t h e  P o i s s o n  b r a c k e t  ( 3 . 5 ) .  

Thus, we arrive at the effective Hamiltonian 
3 

= dtd2d3Vk~k~k~Ak~Ak~Ak~ + ( 3 . 8 )  2~, I dk(okAk*Ak + @ f - ' ~  . . . . . . . . .  ( ~  ~k~) 
";.=1 

4 

2C --~- ~ ~I"Z~D"~i Vk,k.ksk,Ak,A kzAks ~lk.0 (~;  $i~ ) 

where  t h e  new n o r m a l  c o o r d i n a t e s  a r e  a s s o c i a t e d  w i t h  t h e  o l d  o n e s  by t h e  r e l a t i o n s  

Ak a--- ak ~ - [ S , a k  ~ 
2 2 

A'~ ~ = a-~ -I- ~ dtd2~ ~iki ) --oa~a~ ak#k~~ ~, (0 ~--- 60) 

The effective matrix element is 

( 3 . 9 )  

(3.10) 

In this case, the matrix element V corresponds to forbidden processes 

--at0,=a V klk2ka , if k~,~,3~k (3.11) 
Vktk~ks : 0 otherwise 

and V ~ V -- V corresponds to allowed triple processes. Terms are omitted in Eq. (3.10), 
which contain the product VV, that describe the interaction of capillary and gravitational 
waves to higher order than the terms of third order ~V in the Hamiltonian (3.8). 

The kinetic equation for the number of waves [4] (quasiparticles) N(k) 

N~ = S~) {N} + I(4) {~}  (3 .12 )  
a r i s e s  i n  t h e  r a n d o m - p h a s e  a p p r o x i m a t i o n  

<ACA~;> = N(k)8o,_o,8 ( k - k ' )  ( 3 . 1 3 )  

where < > denotes an average over an ensemble, and the collision integrals !(N} describe 
the change in the number of waves because of nonlinear interactions. 

It is also convenient to use a quantum analogy [3] in the derivation of Eq. (3.12), 
although it can be obtained by other means [4]. Using the relations between the canonical 
variable AkO and the annihilation and creation operators, the collision term can be written 
down directly, avoiding laborious calculation. The collision integral describes the bal- 
ance between quasiparticle entrance into, and departure from, the state k and is expressed 
through the probabilities for the corresponding processes. The transition probability is 
2~ multiplied by the square of the modulus of the matrix element of the Hamiltonian (3.8) 
(we assume ~ = i), and the N combination appearing in f can be discovered by comparing f 
with its quantum analog, which for decay and the inverse confluence (3.1) has the form 

fq(klk~k2) ~- (N + i)N~N2 - -  (N~ + t)(N~ + I)N 
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and for the scattering processes (3.2) is 

]q(kk~lk~k3) = (N + i)(N, + I)N~N 8 --  NN~(N2 + i )(N 3 + | )  

The factor N + i corresponds to the creation of a quasiparticle (wave) and the fac- 
tor N, to its annihilation in a given process. These elements arise from the matrix ele- 
ments of the operators Ak ~. The combinations fq are selected because of the equal prob- 
abilities for the direct and inverse processes (principle of detailed balance) which cor- 
responds to Vk ~ = Vk-~ in Eqs. (2.9) and (3.8). The conversion from ~ to f corresponds 
to the condition N >> 1 and a return to the normalization (2.9). 

The term 

I ~  {N} = t dkldkz [Wk I k,kj (k I kxkz) - -  Wk, I k.k/(kl [k~k) -- Wk. kk~ I kkl)] I ( 3. 14) 

d e s c r i b e s  t he  t r i p l e  (decay )  p r o c e s s e s  

W k l  ktk2 : 5 (k --  k~ --  k~) 6 (o --'~1 --  ~ )  U k  [ ktk , ( 3 . 1 5 )  
Uk ] kxk, = ~ 1  V ~  12 

the transition probability, and 

/ ( k ~ i k 2 )  = N,N~ - -  N N  1 - -  NN~, Nx =--- N (k~) etc.  ( 3 . 1 6 )  

The collision integral for quadruple processes 

I(a) {N}  = S dkzdk2dk3Wkk' ' k,k, ] (kkl [ k2k3) ( 3. 1 7 ) 

describes the scattering of a gravitational wave, 

Wkk, [ k,ks = ~ (k + k~ --  k~ - -  k3) 6 (~ + ~1 - -  ~2 - -  ~3) Ukkt I kcks ( 3 . 1 8 )  

�9 2~ 3,p++__ p Ukk, J k~ks " ~  �9 kk,k~ks 

/(kkllk~k3) = NiN~N3 + NN~Ns --  NNzN~ -- NNxN s ( 3 . 1 9 )  

The triple-process collision integral (3.14) agrees with that obtained in [2] for 
waves in deep water (kh >> I) when k >> ko, and the quadruple-process integral (3.17) 
agrees with the collision term in [i]. The notation in [6-8] was used in writing the col- 
lision integrals (3.14)-(3.19) for convenience in comparison. We give here expressions 
and estimates for matrix elements needed in the following: 

l ~/~ ^ ~ k 

+-- i I=V/4 , [ I 
Vkk,k, ----- 8 ~  ~--6-) (kklk~)/" [ - ~  (ksk, ~- k,k,) -{- 

"~Tr(3) ~ ~,~'-"/'~'/.,~ , k >~> h -1, k X ko 
+__ = 1 g,/,q_~l, Vkk,q ~ V ' Z  [kq + 0(q~)], k > ~ k o > ~ q > ~ h  -~ 

(3.20) 

(3.21) 

(3.22) 

V+k ?kT = V-----V ( W ) 

k < ko,h-  
Vk+kTk7 ~ k~'k'/,, k, k, >~'kx ~ ko, h-' 
Ukk, I k,k~ N (klk3) 2 kk~, ko >~  k,k~ ~ kl,k 3 >~ h -1 

(3.23) 

(3.24) 
(3.25) 
(3.26) 
(3.27) 

The matrix elements given contain complete information about nonlinear interaction of 
surface waves. They determine the growth rate of decay instabilities [5], the amplitudes 
of the highest harmonics, etc. The asymptotes (3.26) and (3.27) are needed for studies 
of the convergence of the collision integrals (see [7, 8]). The law for conservation of 
momentum was used in the expressions [see Eqs. (2.9), (3.8)]. 
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4. For a thin layer of fluid with a depth h less than ko -:, we determine the para- 
meters of weak turbulence in the wavelength region where kh << I (shallow water). The 
wave-dispersion law 

~(k) =V =---hk% h-~k~ k0 (4 1) p 

and the transition probability Wk, which according to Eqs. (3.15) and (3.20) is 

W k  [ k,ks = ~ (4.2) 

h-1~> k ~ . k o 

a r e  h o m o g e n e o u s  f u n c t i o n s  i n  t h i s  r e g i o n .  As h a s  b e e n  shown [6 ,  7 ] ,  t h i s  m a k e s  i t  p o s s i b l e  
to find the turbulence distribution. 

The stationary distribution is found as the solution of the nonlinear integral equa- 
tion I(a){N} = 0 which, in addition to the equilibrium solution N ~ m-:, has a power solu- 
tion corresponding to a constant flow of energy P over the turbulence spectrum. The ex- 
ponent is determined by the degree of homogeneity of the transition probability, the dis- 
persion law, and the dimensionality of k space. The solution has the form [7] 

I N ~ ~ ,  s = - -  -~- (m + 2d) ( 4 . 3 )  

H e r e  B a n d  m a r e  i n d i c e s  o f  t h e  h o m o g e n e i t y  o f  t h e  d i s p e r s i o n  l a w  ~k ~ kB and  o f  t h e  
s q u a r e  o f  t h e  m o d u l u s  o f  t h e  m a t r i x  e l e m e n t  Uk ~ U k / k ~ k 2 ( 3 . t 5 )  ( U t k  = tmUk) .  F o r c a p i l l a r y  
w a v e s  i n  s h a l l o w  w a t e r ,  B = 2 ,  m = 4 a n d  we f i n d  s = --2 f r o m  ( 4 . 2 ) .  The d e p e n d e n c e  o f  
the distribution on energy flow is determined by the kinetic equation 

OP / Ok =_ --  o)kI(a) {N}, [(a) {N} ~ N 2 

Having set up the dependence on the depth h from consideration of dimensionality, we ob- 
tain (to the order of a numerical factor ~i) 

= > ko N (4.4) 

3 2 --.1. 2 ~The solution (4.4) can be obtained on the basis of the estimate I )(N} ~ k ~ N (k) x 
Uh ksj using the localizability of the distribution, from which it follows N ~P:/=(k~Uk(a))-I/a 
in agreement with (4.4). The distribution of capillary waves can encompass both deep and 
shallow water regions. Then, in accordance with Eqs. (1.2) and (4.4) 

N p,j,~k,,,', {F'E x,<t  = (-~)  k-acp(kh), ~ ( x ) = _  i ,  x ~ l '  k~>ko  ( 4 . 5 )  

The distribution (4.4) is a local distribution, which can be confirmed by evaluating 
the convergence of the collision integral as was done in [7] for ~ < 2. We note that the 
system of capillary waves in shallow water is a two-dimensional gas of quasiparticles with 
a quadratic dispersion law [e = p2/2M, p = h-k, M =(h/2)[a/oh ]-~la ~ is Planck's constant]. 
Decays occur at a right angle, and the transition probability (4.2) has a simple form. Capil- 
lary waves in shallow water can serve as a convenient model for the study of stochastic sys- 
tems. 

5. Coupling of turbulence spectra when k ~ ko is of fundamental interest. We con- 
sider the case koh >> i and investigate the solution with constant flow of energy passing 
from the gravitational region into the capillary region. The transition into the region 
of decay spectra is accompanied by a change in the dependence of N on the flow P. There- 
fore~ the distribution is expressed through a function of the two dimensionless parameters 
k/ko and P/.Vk3(Vk - w/k), the asymptotic form of which is obtained from comparison with 
Eqs. (I.i) and (1.2), 

N = p~/~k_4F ( 'P k )  F(x,  g) = {  i, y , : ~ l  
v ~  ' ko ' x'~'., g>~>l  ( 5 . 1 )  

The parameter P/Vk 3 appearing here plays an important role in the theory of weak tur- 
bulence; weakness of turbulence (smallness of flow) corresponds to small values of this 
dimensionless parameter, P/Vk 3 << i. We turn to the effects resulting from the interac- 
tion of capillary and gravitational waves. The scattering of capillary waves by gravita- 
tional waves, which is contained in I(3), can be significant in the region adjacent to 
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ko(k ~ ko). These processes lead to a change in the spectrum of gravitational waves [9] 
and to their damping [i0]. Denoting the wave vector for a gravitational wave by q and 
that for a capillary wave by k, we write the conservation law corresponding to this pro- 
tess: 

(k~) : ~ (k2) + o(q),  k~ = k~ + q ( 5 . 2 )  

Confining ourselves to the deep-water case, kh >> i and qh >> i, we assume that a 
weak-turbulence distribution is established in the capillary region. For small flows of 
energy, the quadruple processes of gravitational-wave scattering can be neglected [1( 4 ) << 
1(3)]. Therefore, the turbulence spectrum in the gravitational region will be induced by 
the spectrum n(k) of capillary waves (1.2), and a stationary distribution Nq of gravita- 
tional waves is found from [9] 

I3{Nq, n}~= - -  f a'kl dk2 [Wkt~=q ( N q n 2 -  Nqnl  - -  nln2) -{- Wkdkt q (Nqn I - -  Nqn~ - -  rtan2)] = 0 ( 5 . 3 )  

The integration in Eq. (5.3) is carried out over the region k~,2 ~ ~ in accordance 
with Eq. (3.15), n: ~ n(kl). The term corresponding to the decay of gravitational waves 
into capillary waves and proportional to Wqlk:k2 is absent, since this process is forhid- 
den by the conservation laws. The second t&rm in Eq. (5.3), which is proportional to 
Wk21k~qy(k21klq) , reduces to the first term through the substitution of variables kx $ k2 
so that we have for the induced distribution of gravitational waves 

The distribution N_ takes on a power-law form in the region q << ko. From Eq. (5.2) 
we have k2 z kx = 4ko2/~q cos qk, n2 -- nl z - mq(3nz/3mz), and Eq. (5.4) reduces to 

% k0 % -4 q '/, (5.5) 

Thus, a falling spectrum in the capillary region," n k ~ k -~7/", induces a rising spec- 
trum in the gravitational region, Nq ~ qg/a [9]. 

The distribution (5.5) is only possible for small energy flows P/Vo a << i, since it 
is impossible to consider the contribution small from processes of higher order in the 
neighborhood of k0 when P/Vo 3 > 1 and the turbulence is not weak. For scattering of capil- 
lary waves by gravitational waves, the kinetic equation Nq = I(3) is a linear differential 
equation because of Eq. (5.3). The nonstationary problem of the interaction of gravita- 
tional waves with an arbitrary ensemhle of capillary waves is solved exactly; the inverse 
relaxation time is equal to twice the denominator in Eq. (5.4) (compare [I0]). 

6. As follows from the kinetic equation, weak turbulence corresponds to small values 
of the parameter k2mk-~Uk(3)Nk o r k4~k-IUk(4)Nk 2, when the collision frequency is less than 
the wave frequency. When there is an increase in this parameter, interaction processes of 
higher order, which are not taken into account in the kinetic equation, begin to play an 
important role. For a distribution with constant flows, this denotes the smallness of P/Vk 3 
ormQ/Vk 3 . The condition of weak turbulence begins to break down (with increase in flow) 
apparently locally and primarily in the neighborhood of k ~ ko, since the phase velocity 
is minimal when k = ko. This is also seen from a comparison of weak-turbulence distribu- 
tions with the universal distributions of Phillips and Hicks [ii]. The distribution [ii] 
leading to the wave-number spectrum ~(k) = (B/~)k -~ was obtained from dimensionality con- 
siderations and independently of considerations associated with the stability of a water 
surface. The corresponding N(k) is 

Bv(k)k-4, V(k)-~/k, B----,iO -3 N (k )  = 

<~ (r, t) ~ (r +i~,  t)) = S d k ~  ~ )  e ikr ~ (k) = N (k) / (2a) 'V ~ )  ( 6 . 1 )  

The universal distribution for capillary waves has the same form with a different con- 

stant B'-B. 

In contrast to the Dbukhov--Kolmogorov distribution E k = P2/3k-5/3 for turbulence in an 
incompressible fluid [12], the distribution (6.1) does not contain the flow (in a system of 
propagating waves such distribution can be constructed from powers of ~ and k which deter- 
mine the local scale of turbulence). At sufficiently high flows P/Vo 3 > i, the weak-turbu- 
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lence distributions (i.i) and (1.2) will intersect the universal distributions. We con- 
sider the gravitational portion of the spectrum. If the source is located in the region 
of small wave numbers k ~ a, and an energy flow is created toward larger k, the distribu- 
tion (5.1), which transforms into the Phillips distribution for wave numbers kph- ko(P/ 

3 - - 2  3 �9 . > 3 
Vo ) / , will be valld for k > a and P/V k < i. The asymptote corresponding to this 
(N k does not depend on P!) is F(P/Vk 3, k/ko) = (P/Vk3) -I/3 for P/Vk ~ >> i, k/ko << i, which 
also leads to the Phillips distribution according to Eq. (5.1). 

As in the preceding, when there is a large energy flow in the capillary portion of 
the spectrum, the distribution (5.1) transforms into the Hicks distribution when k < k H ~ 
ko(P/Vo3) 2/3, which corresponds to the asymptote 

f (P  / Vh ~, k / ko) = (P / Vh3)-', '~ for k / ko ~> t ,  P / V~ s ~ l 

Thus, one can assume that the distributions [ii] are limiting for distributions with 
constant flow of energy over the turbulence spectrum. There is no explicit dependence on 
flow) the magnitude of the flow determines the region of transition from a universal spec- 
trum to a spectrum of weak turbulence. 
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